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ARTICLE

IRAK-M Is Involved in the Pathogenesis of Early-Onset Persistent
Asthma
Lenuta Balaci,* Maria Cristina Spada,* Nazario Olla, Gabriella Sole, Laura Loddo, Francesca Anedda,
Silvia Naitza, Maria Antonietta Zuncheddu, Andrea Maschio, Daniele Altea, Manuela Uda,
Sabrina Pilia, Serena Sanna, Marco Masala, Laura Crisponi, Matilde Fattori, Marcella Devoto,
Silvia Doratiotto, Stefania Rassu, Simonetta Mereu, Enrico Giua, Natalina Graziella Cadeddu,
Roberto Atzeni, Umberto Pelosi, Adriano Corrias, Roberto Perra, Pier Luigi Torrazza, Pietro Pirina,
Francesco Ginesu, Silvano Marcias, Maria Grazia Schintu, Gennaro Sergio Del Giacco,
Paolo Emilio Manconi, Giovanni Malerba, Andrea Bisognin, Elisabetta Trabetti, Attilio Boner,
Lydia Pescollderungg, Pier Franco Pignatti, David Schlessinger, Antonio Cao, and Giuseppe Pilia†

Asthma is a multifactorial disease influenced by genetic and environmental factors. In the past decade, several loci and
1100 genes have been found to be associated with the disease in at least one population. Among these loci, region 12q13-
24 has been implicated in asthma etiology in multiple populations, suggesting that it harbors one or more asthma
susceptibility genes. We performed linkage and association analyses by transmission/disequilibrium test and case-control
analysis in the candidate region 12q13-24, using the Sardinian founder population, in which limited heterogeneity of
pathogenetic alleles for monogenic and complex disorders as well as of environmental conditions should facilitate the
study of multifactorial traits. We analyzed our cohort, using a cutoff age of 13 years at asthma onset, and detected
significant linkage to a portion of 12q13-24. We identified IRAK-M as the gene contributing to the linkage and showed
that it is associated with early-onset persistent asthma. We defined protective and predisposing SNP haplotypes and
replicated associations in an outbred Italian population. Sequence analysis in patients found mutations, including in-
activating lesions, in the IRAK-M coding region. Immunohistochemistry of lung biopsies showed that IRAK-M is highly
expressed in epithelial cells. We report that IRAK-M is involved in the pathogenesis of early-onset persistent asthma.
IRAK-M, a negative regulator of the Toll-like receptor/IL-1R pathways, is a master regulator of NF-kB and inflammation.
Our data suggest a mechanistic link between hyperactivation of the innate immune system and chronic airway inflam-
mation and indicate IRAK-M as a potential target for therapeutic intervention against asthma.
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La Sapienza, Roma (M.D.); Unità Operativa di Allergologia, Ospedale “Cesare Zonchello,” Nuoro, Italy (N.G.C.; R.A.); Dipartimento Materno Infantile e
Biologia-Genetica, Sezione di Biologia e Genetica (G.M.; A. Bisognin; E.T.; P.F.P.), and Clinica Pediatrica (A. Boner), Università di Verona, Verona, Italy;
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Asthma (MIM #600807) is a chronic inflammatory disease
of bronchial epithelium and submucosa that leads to ir-
reversible anatomical changes in bronchi and permanent
impairment of lung function. Its prevalence in Western
industrialized societies is now 5% and growing, with in-
creasing associated mortality.1,2 Interest in finding etio-
logic factors has correspondingly intensified.

Whereas the role of the immune system and of specific
subsets of T-helper (Th) cells in the pathophysiology of
asthma has been clearly established, the genes implicated
in this disease are just beginning to be identified. Multiple

genetic loci and several gene variants have been recently
detected and inferred to contribute to allergic asthma.3

For most of these genes, however, their relationship to the
pathophysiology of asthma remains conjectural, and none
appears to be directly involved in the activation of airway
inflammatory processes or allergy. Replication of studies
has also been difficult because of the genetic heterogeneity
of asthma, the extreme variability in disease expression,
the presence of phenocopies, and a marked variety of en-
vironmental influences.

One approach to reducing heterogeneity in studies of
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Table 1. Sardinian Families with Asthma Studied by Multipoint Linkage Analysis and TDT

Characteristic

Linkage Analysis TDT

Total Sample
Age Onset �13

Yearsa

Age Onset 113
Yearsb Total Samplec

Early-Onset
Persistent Asthmac

Subjects (n) 410 243 167 1,100 453
No. of familiesd (no. of sibs) 100 (121) 60 (66) 40 (55) 294 139
Males (%) 61 69 43 56 63
Age at asthma onset (years)e 10.69�10.76 5.13�3.61 18.41�12.51 10.15�10.82 4.79�3.59
Age (years)e 21.86�12.37 15.51�6.47 30.76�13.18 20.39�12.10 15.95�8.22

a Sib pairs in the early-onset group (�13 years) are concordant for age at asthma onset.
b The group with age at onset 113 years includes sibs both concordant and discordant for onset.
c Only one affected sibling (the proband) is included in TDT analysis.
d Families were selected from all four provinces of Sardinia, in proportions representative of the local population.
e Data are reported as means�SDs.

multifactorial traits focuses on founder populations, which
have grown from a few initial members to large modern
populations without appreciable in-migration and of which
Sardinia provides one of the most promising.4,5 For ex-
ample, monogenic disorders such as b-thalassemia, Wil-
son’s disease, and autoimmune polyendocrinopathy-can-
didiasis-ectodermal dystrophy syndrome, as well as
complex disorders like diabetes type I, show limited het-
erogeneity of pathogenetic alleles.6–9 The population of
the island shares much the same environment, reducing
nongenetic sources of variation as well.

To elucidate the genetic components of asthma, we
studied affected Sardinian families by linkage and asso-
ciation analysis at chromosome 12q13-24, a region pre-
viously implicated in asthma etiology in different pop-
ulations.10,11 Here, we report that variants in the inter-
leukin-1 receptor associated kinase-M (IRAK-M; HUGO no-
menclature IRAK3 [MIM *604459]) gene are associated
with early-onset persistent asthma and indicate IRAK-M
as a potential new target for therapeutic intervention
against asthma and atopic diseases.

Material and Methods
Sample Collection

Patients were recruited by the recovery of information from ar-
chives and ongoing clinical activities from all the four provinces
of Sardinia, in proportions representative of the local population.
Atopic asthmatic sibling pairs (sibs) and trios were collected over
a period of 4 years, mainly from pediatric and pneumologic cen-
ters. To avoid phenocopies, all patients fulfilled the following cri-
teria: Sardinian origin for at least 3 generations and age at visit
16 years. At the recruitment sessions, each subject was inter-
viewed, disease status was ascertained by physical examination,
permission was asked to access personal health records, and blood
samples were collected. Each participant signed an informed con-
sent form. All study methods have been approved by the local
ethics committee (Azienda Sanitaria Locale number 8 protocol
24/Comitato Etico/02, authorization number 4737).

Asthma was diagnosed by a pulmonary physician, in accor-
dance with American Thoracic Society criteria.12 Pulmonary func-
tion was evaluated by spirometry: forced expiratory volume at
the 1st s (FEV1) was expressed in liters/minute. A physician ad-
ministered a questionnaire collecting clinical history and classi-

fying asthma severity in four levels according to the World Health
Organization guidelines (Global Initiative for Asthma). The use
of asthma drugs and any other medication was recorded. Atopy
was detected by positive skin testing to common inhalant aller-
gens by standard methods. Patients with early onset were inter-
viewed by a physician about persistency of asthma symptoms
after the completion of puberty (18 years).

The replication sample was composed of 345 unrelated indi-
viduals (67 cases and 278 healthy controls) selected from a cohort
of 211 asthmatic families that has been described elsewhere.10 In
particular, since information about age at disease onset was not
available for this sample, we selected as cases all atopic individuals
older than 18 years with persistency of asthma symptoms (per-
sistent asthmatic cases). All families were ascertained at the Pe-
diatric Clinic of the University of Verona and at the Bolzano
Hospital. Phenotyping included interview of the individuals with
a modified American Thoracic Society questionnaire, an asthma
physician’s diagnosis, measurement of serum immunoglobulin E
(IgE) levels, skin testing against a panel of allergens, and bronchial
hyperresponsiveness testing with methacholine.

Genotyping

Genomic DNA isolated from peripheral blood leukocytes was
used for genotyping with both microsatellite and SNP markers.
Microsatellite markers, including di-, tri-, and tetranucleotide re-
peats, were chosen from the Marshfield Center for Medical Ge-
netics, The GDB Human Genome Database, and the Ensembl
Genome Browser. All microsatellites were analyzed using the
MegaBACE 1000 fluorescence-based genotyping methodology.
Genotypes were scored using MegaBACE Genetic Profiler Software
v1.5 (Amersham Biosciences). Two DNA standards, consisting of
the CEPH control individual number 1347.02 (Applied Biosys-
tems) and an internal DNA control, were incorporated in all the
runs to verify accuracy of typing. SNP markers were selected from
dbSNP, The SNP Consortium, and Ensembl Genome Browser.
SNP-based genotyping was performed after dot-blot preparation
of amplified DNA with use of sequence-specific oligonucleotide
probes.

All markers were PCR amplified and genotyped a second time
when failures occurred during the first round of amplification.
Data quality of microsatellite and SNP genotypes was established
by three methods: reproducibility of control DNA samples, ex-
pected Mendelian inheritance of alleles within a family, and tests
of Hardy-Weinberg equilibrium. These last analyses were per-
formed with the PEDSTATS program with the use of unrelated
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individuals ( ).13 Overall, we obtained a rate of genotypingP 1 .05
efficiency 196% in the first step and reached 99.8% in the second.

Mutation and Sequence Analysis

Mutation analysis of all exons and intron/exon boundaries was
performed bidirectionally by direct sequencing of PCR products.
In brief, for each gene, we first sequenced a subgroup of affected
individuals by selecting one affected individual per informative
family (the proband). Every mutation was first confirmed in the
patient by resequencing, and then its presence was ascertained
in the remaining family members (sibs and both parents). Mu-
tations were also checked to verify compatibility with Mendelian
inheritance. Confirmed mutations were then analyzed in the en-
tire sample of affected families (294 families) and in 200 healthy
controls by dot-blot analysis with the use of allele-specific oli-
gonucleotide probes.

Each sample was amplified using the GeneAmp PCR System
9700 Thermal Cycler (Applied Biosystems) in accordance with
the manufacturer’s conditions. Sequencing reactions were per-
formed using the ABI PRISM BigDye chemistry BigDye Terminator
v3.1 Cycle Sequencing Kit and the automated sequencer ABI
PRISM 3100 (Applied Biosystems), in accordance with the man-
ufacturer’s recommendations, and were visualized with the DNA
Genetic Analyzer software (ABI PRISM 3100 Genetic Analyzer
Data Collection Software [Applied Biosystems]). Sequences were
aligned and compared with consensus from the human genome
databases (National Center for Biotechnology Information and
UCSC Genome Browser).

Statistical Analyses

Multipoint linkage analyses were calculated by maximum-like-
lihood estimate of identical-by-descent (IBD) sharing for affected
sib pairs with use of the GENEHUNTER program v2.1.14 LOD
scores were computed using the possible triangle method, and
no assumption was made about mode of inheritance. Sibships
containing more than one affected sib pair (nine families) were
considered as “all independent pairs.” For the analysis on the
stratified sample, multipoint linkage analysis was conducted on
two subgroups of affected sib pairs stratified for age at asthma
onset. The early-onset subgroup contains sib pairs concordant for
age at asthma onset (�13 years), whereas the group with age at
onset 113 years includes sibs both concordant and discordant for
onset. The order of microsatellites and the genetic intermarker
distances were derived using CRIMAP v2.4,15 after physical lo-
calization data was checked with the Ensembl Genome Browser.
To obtain a 95% CI in localizing susceptibility genes on 12q, the
GENEFINDER program was used.16 It applies generalized esti-
mating equations to estimate the location of a susceptibility gene
on the basis of IBD sharing of multiple markers by affected sib
pairs and can incorporate covariate information on sib pairs, such
as age at onset. To assess the effect of the risk haplotype on link-
age, we also used the genotype-IBD sharing test (GIST),17 which
assigns family-specific weights on the basis of the genotype of
the affected family members and the model of interest (domi-
nant, recessive, or additive) and tests for correlations between
these weights and family-based IBD sharing (NPL score).

Association analyses of SNPs with asthma were performed by
both the transmission/disequilibrium test (TDT) and case-control
analysis. For the TDT, only trios consisting of father, mother, and
one affected son were included in the analysis. To assess signif-

icance of the TDT results, we derived empirical P values by a
permutation procedure that used the same genotype data as our
sample. Each permuted data set was formed by randomly reas-
signing alleles as transmitted or untransmitted. Haploview was
used to investigate the linkage disequilibrium (LD) block structure
and to identify tag SNPs and distribution of haplotypes across
the IRAK-M gene and the flanking genomic regions.18 To deter-
mine haplotype-transmission rates from parents to affected sib-
lings, we used the UNPHASED program.19

The case-control study of the Sardinian sample was performed
by comparing allele and genotype distribution of one affected
persistent case per family with those of 460 healthy subjects.
Logistic-regression analyses were used to calculate odds ratios
(ORs) with 95% CI and corresponding P values for all analyzed
SNPs, with age and sex controlled for as covariates. P values were
adjusted for multiple testing by Bonferroni correction, to main-
tain an overall error rate of 0.05. We also performed an analysis
with the THESIAS program,20 to test covariate-adjusted haplotype
effects on disease. THESIAS was also used to test for deviation
from additivity (on a log scale) of haplotype effects by a likeli-
hood-ratio test.

For the Italian subjects, the difference of distributions between
cases and controls of genotypic and allele frequencies was as-
sessed by the Fisher exact test. In this sample, the presence of
population stratification was excluded by the method proposed
by Pritchard and colleagues and was implemented in the program
STRUCTURE.21 In brief, 400 unrelated individuals selected from
the sample of asthmatic families were studied using 53 unlinked
markers. Several runs of the program were performed under the
hypothesis of one, two, three, four, or five clusters in the pop-
ulation. Results showed that the model including only one cluster
is much more likely than any other model, indicating that the
individuals studied are genetically homogeneous.

Immunohistochemistry

Lung biopsies were fixed in 10% formalin, were embedded in
paraffin, were serially sectioned at 5 mm, and were processed for
immunohistochemistry by standard methods with the following
antibodies: rabbit polyclonal anti-IRAK-M (Cell Signaling), mouse
monoclonal anti–thyroid transcription factor-1 (TTF1) (Dako),
and mouse monoclonal anti-phospho-NF-kB p65 (Cell Signaling).
Immunoperoxidase staining was performed with the biotin/strep-
tavidin–based LSAB2 system (Dako). Nuclei were counterstained
with hematoxylin. Photographs were taken using a Leica DMR
microscope, with use of the program Leica IM50 Image Manager
v1.2 (Leica Microsystems).

Results
Linkage Analysis at Chromosome 12q13-24

Our initial analysis of asthma susceptibility genes in the
candidate region of chromosome 12q13-24 was conducted
with 121 affected sib pairs selected from 100 families com-
ing from all four provinces of Sardinia (table 1). Multipoint
nonparametric affected sib pair analysis in this cohort
showed suggestive evidence of linkage at marker D12S75
(fig. 1A, and see table A1 for the markers used). To reduce
possible sources of variation and to increase the power to
detect linkage, we repeated the analysis after stratification
of our sample population by age at asthma onset. We ar-
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Figure 1. Identification of IRAK-M as an asthma susceptibility gene. A, Multipoint linkage analysis plots of chromosome 12q13-24
for Sardinian asthmatic sib pairs. LOD scores are shown for the whole sample (circles), for affected sibs concordant for early age at
onset (�13 years) (squares), and for affected sibs with at least one patient with age at onset 113 years (triangles). B, Genomic region
of the 95% CI for gene location estimate. Asthma candidate genes for which mutation analysis was performed are indicated, along
with microsatellite markers used in linkage analysis. C, LD in a 400-kb region containing IRAK-M (black bar). D′ values for pairwise LD
between each marker are shown according to LD strength, from (red) to (white). SNPs used in TDT analysis are also′ ′D 1 0.8 D ! 0.3
indicated; seven SNPs in bold were significant after multiple test correction (detailed results in table A2).

bitrarily selected a pubertal cutoff age of 13 years, on the
basis of clinical observations pointing to the existence of
phenotypical heterogeneity in early- versus late-onset
forms of the disease (also see the “Discussion” section).
Linkage analysis revealed that the 12q13-24 region is sig-
nificantly linked to asthma in a subgroup of 60 families
(66 sibs) with exclusively early-onset cases, yielding a mul-
tipoint LOD score of 3.56 ( ) between mark-�5P p 5.2 # 10
ers D12S75 and D12S335. By contrast, no evidence of link-
age was detected in the families with at least one patient
with age at asthma onset 113 years (fig. 1A and table 1).
No bias for geographic origin within Sardinia was observed

between the two subgroups. Analysis with the GENEFIN-
DER program16 in the whole sample, with age at onset
incorporated as a covariate, showed that the most likely
location for one or more genes predisposing an individual
to asthma lay within a 95% CI of 10.5 cM centered 2.7
cM distal to D12S75 ( ) (fig. 1A).P p .001

IRAK-M as the Candidate Gene in the Region of Maximum
LOD Score

The 10.5-cM region of the 95% CI for estimated gene
location contains the cytokine genes interferon gamma
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Table 2. Case-Control Analysis Using 22 SNPs in the Genomic Region Spanning the IRAK-M Gene

Marker
Allele 1/
Allele 2

Allele 2
Frequency

Allele 2 versus Allele 1
Analysis Genotype Analysis

Case Control Pa OR (95% CI)b Casec Controlc Pa OR Hom (95% CI)d OR Het (95% CI)d

rs7970350 T/C .336 .381 .2315 .834 (.620–1.122) 62/54/18 182/197/74 .4748 .714 (.379–1.343) .804 (.513–1.260)
rs949911 C/A .137 .148 .1921 .755 (.495–1.151) 103/34/2 335/112/12 .4040 .420 (.083–2.135) .796 (.493–1.286)
rs6581660 T/G .291 .280 .4831 1.124 (.811–1.559) 66/58/10 239/179/38 .7821 1.260 (.566–2.807) 1.126 (.731–1.734)
rs11836463 C/A .241 .281 .1689 .788 (.561–1.106) 78/52/7 242/176/41 .3887 .616 (.253–1.499) .791 (.512–1.224)
rs2870784 G/T .187 .195 .3707 .837 (.567–1.235) 85/48/1 296/144/17 .1790 1.100 (.708–1.708) .155 (.020–1.225)
rs10878378 T/A .342 .413 .0297 1.399 (1.033–1.894) 59/61/16 160/211/81 .0942 1.960 (1.020–3.764) 1.402 (.735–2.672)
rs1177578 G/C .338 .416 .0145 1.458 (1.077–1.972) 61/62/16 159/210/83 .0500 2.113 (1.103–4.050) 1.439 (.756–2.739)
rs1168754 G/C .180 .193 .3361 .826 (.560–1.219) 88/47/1 295/138/18 .7040 1.089 (.702–1.687) .167 (.022–1.305)
rs2141709 G/A .263 .322 .0514 .724 (.523–1.002) 75/55/9 213/191/51 .1497 .493 (.220–1.106) .752 (.489–1.155)
rs1168770 A/G .335 .415 .0089 1.506 (1.108–2.046) 60/61/15 162/212/84 .0330 2.298 (1.180–4.471) 1.553 (.804–2.300)
rs2701652 G/C .167 .209 .1847 .751 (.492–1.146) 91/43/1 289/148/22 .1937 .146 (.018–1.177) .934 (.573–1.524)
rs1732886 A/G .159 .210 .1063 .704 (.460–1.077) 95/42/1 288/148/22 .1614 .139 (.017–1.118) .863 (.528–1.409)
rs1882200 C/T .460 .341 .0012 1.721 (1.240–2.390) 39/72/28 207/190/61 .0022 2.676 (1.360–5.268) 2.189 (1.312–3.650)
rs11465955 C/T .460 .354 .0005 1.680 (1.256–2.248) 39/71/28 198/197/64 .0010 2.599 (1.413–4.780) 2.240 (1.393–3.603)
rs2293657 A/T .460 .341 .0013 1.708 (1.232–2.368) 39/71/28 209/186/63 .0022 2.636 (1.343–5.173) 2.179 (1.307–3.631)
rs1821777 T/A .464 .359 .0006 1.673 (1.249–2.240) 38/71/28 195/198/66 .0011 2.587 (1.405–4.763) 2.237 (1.387–3.609)
rs1624395 G/A .511 .417 .0015 1.632 (1.206–2.209) 27/81/30 154/220/79 .0016 2.626 (1.391–4.958) 2.469 (1.464–4.163)
rs1370128 C/T .536 0431 .0005 1.709 (1.264–2.311) 26/75/36 147/220/85 .0017 2.964 (1.593–5.514) 2.204 (1.295–3.751)
rs2118137 C/G .290 .320 .4341 .879 (.637–1.214) 67/62/9 210/204/45 .6161 .666 (.296–1.499) .962 (.629–1.470)
rs289068 A/G .213 .229 .3360 .823 (.554–1.223) 83/48/5 271/166/22 .6246 .638 (.203–2.007) .840 (.519–1.359)
rs3741604 A/G .269 .336 .0226 1.475 (1.056–2.060) 72/52/10 195/214/46 .0481 1.781 (.816–3.889) 1.065 (.482–2.354)
rs1168314 T/C .293 .328 .4325 .879 (.636–1.214) 67/61/10 204/210/46 .7142 .728 (.331–1.599) .912 (.595–1.397)

a P value by logistic regression. Values in bold were still significant after Bonferroni correction (threshold .0022).
b Sex- and age-adjusted OR (95% CI).
c The three values indicate the number of homozygotes for the major allele and the number of heterozygotes and homozygotes for the minor allele in the control

sample.
d OR (95% CI) for homozygous and heterozygous risk-allele carriers.

(IFNG), interleukin 22 (IL22), and interleukin 26 (IL26),
which were previously implicated in asthma (see fig. 1B).
Sequence analysis of all the exons as well as the intron/
exon boundaries of these genes in the patients with
asthma chosen as the most informative for linkage re-
vealed no associated variation (data not shown).

On the basis of its function and possible relevance to
asthma, we turned to IRAK-M, the other well-known gene
located within the linkage peak. IRAK-M is one of the four
IRAK proteins that mediate signal transduction of the Toll-
like receptor (TLR)/IL-1R family in host defense and in-
flammatory responses, acting as a negative regulator.22–25

TLRs are key participants in lung host defense and in the
regulation of the Th1/Th2 balance and are thus thought
to have a major impact on Th2-biased allergic diseases like
asthma.26,27

To look for association, we performed a TDT, using 22
SNPs distributed across a region of 387 kb spanning the
IRAK-M gene in an extended sample of 294 families with
asthma (100 from the initial linkage analysis and 194 ad-
ditional families recruited later) (see table 1). We con-
ducted the analysis by stratifying the families according
to the age at asthma onset, as described above. Strong
evidence of association was detected only in the subgroup
including subjects with early-onset persistent asthma
(139 families). We identified seven SNPs with significant
P values even after correction for multiple testing (fig. 1C
and table A2). Four SNPs mapped inside the IRAK-M gene

(rs1882200, rs11465955, rs2293657, and rs1821777),
whereas the remaining three (rs10878378, rs1177578, and
rs1168770) were several kilobases upstream. Unlike those
in the IRAK-M gene, these SNPs showed no replicated sig-
nificance in a second population or in case-control studies
(see below), and their apparent association with asthma
is likely a consequence of LD. Indeed, a disequilibrium
estimate of defines a single 138-kb haplotype′D � 0.70
block containing the entire IRAK-M gene (fig. 1C). In this
interval, we identified four common haplotypes tagged by
six SNPs, which captured most of the genetic variation in
this area of the genome. The most frequent haplotypes
(GGGTAT and GCACGC) were significantly over- and un-
dertransmitted, respectively, to early-onset persistent asth-
matic patients (empirical and , re-P p .0011 P p .0282
spectively) (see table A2).

To characterize better the association of IRAK-M with
asthma in our affected population, we performed a case-
control study, using a subgroup of 139 patients with early-
onset persistent asthma as cases (one affected case per
family) and 460 healthy subjects as controls (table A3).
This analysis confirmed the association and showed that
six SNPs spanning the IRAK-M gene, including the pre-
viously described four intragenic SNPs, maintained sig-
nificant values after Bonferroni correction (.0005 ! P !

; corrected values ; ORs 1.63–1.72) (ta-.0015 .011 ! P ! .033
ble 2). Analysis based on genotype counts revealed that
the SNP-associated risk within the IRAK-M gene ranged
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Figure 2. Linkage analysis according to the presence of the risk
haplotype. With the use of markers from 12q13.3 to 12q21.1 to
analyze the initial sample of 100 families (121 sib pairs), the LOD
score values relative to 64 sib pairs sharing the risk haplotype
(triangles) are similar (MLS 1.70) to those of the whole sample
(squares) (MLS 1.93), whereas the sample of siblings not sharing
the risk haplotype (circles) shows a much lower value (MLS 0.30)
for the same microsatellite marker, D12S75.

Table 3. Case-Control Analysis Haplotypes Inside the IRAK-M Gene in Sardinians

Haplotypea

Frequency

Pb

Empirical P
(105 Permutations) OR (95% CI)

Cases
( )N p 139

Controls
( )N p 460

CGC .464 .568 .0022 .0101 Reference
TAT .460 .356 .0018 .0081 1.73 (1.24–2.40)
CAT .051 .058 .5982 .9759 1.13 (.35 –3.60)
CGT .026 .017 .3454 .3454 2.31 (.83–6.45)

NOTE.—Likelihood-ratio test for global haplotype effect: ( ); .2x p 14.26 df p 4 P p .0065
a Haplotypes are defined by three tag SNPs: rs11465955, rs1624395, and rs1370128.
b P value by likelihood-ratio test.

from 2.18 to 2.47 for heterozygous carriers and from 2.59
to 2.96 for homozygous individuals. Three tag SNPs within
IRAK-M (rs11465955, rs1624395, and rs1370128) were suf-
ficient to identify protective and predisposing SNP hap-
lotypes (table 3). The risk haplotype (TAT) was associated
with early-onset persistent asthma (46.0% cases vs. 35.6%
controls), whereas the wild-type haplotype (CGC) was less
frequent in cases than in controls (46.4% versus 56.8%).
Furthermore, analysis with the THESIAS program20 esti-
mated sex- and age-adjusted haplotype effects and showed
that the OR of the risk haplotype was 1.73 (95% CI 1.24–
2.40), with a multiplicative effect on disease (table 3).

To assess whether the genetic linkage peak at 12q13-24
could be explained by the presence of the risk haplotype
inside the IRAK-M gene, we conducted a linkage analysis
with the initial sample of 100 families, using microsatellite
markers located within the linkage peak. When 64 affected
sibs who shared the risk haplotype defined within IRAK-
M were excluded from this sample, the maximum LOD
score (MLS) value at marker D12S75 dropped dramatically,
from 1.93 to 0.30 (fig. 2). Notably, the LOD score values
relative to the 64 sibs sharing the risk haplotype (MLS
1.70) were similar to those observed for the whole sample.
Furthermore, the GIST confirmed that the risk haplotype
accounted for a significant fraction of linkage evidence
( ), with the recessive model better explaining theP p .027
linkage signal ( ). These analyses thus support theP p .013
relation of the linkage signal to the IRAK-M risk haplotype.

Replication in an Independent Italian Cohort

To confirm the association of IRAK-M with asthma, we
performed a case-control study in a cohort from mainland
Italy that had previously shown evidence of linkage on
chromosome 12q (see table A3).10 This population, like
other European populations, is genetically distant from Sar-
dinians.28 We evaluated the six tag SNPs that had defined
predisposing and protective haplotypes in the TDT anal-
ysis of the Sardinian population (rs2870784, rs1177578,
rs2141709, rs11465955, rs1624395, and rs1370128). The
results revealed a significant association for two SNPs
within IRAK-M—rs1624395 and rs1370128 ( andP p .004

, respectively)—which was maintained even afterP p .002
Bonferroni correction (corrected and .012, re-P p .024
spectively) (table 4). rs11465955 also showed a positive

trend for association ( ). Genotype analysis vali-P p .029
dated these results. In contrast with the haplotype risk
model of the case-control analysis in the Sardinian pop-
ulation, the best risk model associated with markers inside
IRAK-M for the mainland Italian population is recessive,
by a model-free approach. Notably, the Sardinian and
mainland Italian populations presented the same IRAK-
M-associated alleles and similar frequency of the most
common haplotypes (table A4).

Mutation Analysis of the IRAK-M Gene

The IRAK-M gene consists of 12 exons spanning a region
of ∼60 kb in 12q14.3 and encodes a protein of 596 aa.
Like the other members of the IRAK family, IRAK-M con-
tains an N-terminal death domain (DD) followed by a cen-
tral kinase-like domain and a C-terminal unique stretch
of amino acids.22 The mechanism by which IRAK-M acts
as a negative regulator of the TLR/IL-1R–signaling path-
ways is still speculative, but it may prevent phosphoryl-
ation and dissociation of IRAK-1 from the receptor-adap-
tor complex, resulting in the interruption of downstream
signaling.25
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Table 4. Case-Control Analysis in an Italian Sample with Use of the Six Tag SNPs Identified in the
Sardinian Sample and Used in TDT Analysis

SNP
Allele 1/
Allele 2

Allele 2
Frequency

Allele 2 versus Allele 1
Analysis Genotype Analysis

Case Control Pa OR (95% CI) Caseb Controlb Pa ORc (95% CI)

rs2870784 G/T .189 .251 .079 1.44 (.89–2.32) 45/17/4 155/106/17 .624 .99 (.32–3.05)
rs1177578 G/C .371 .415 .203 1.20 (.81–1.78) 27/29/10 98/129/51 .341 .79 (.38–1.66)
rs2141709 G/A .227 .331 .012 1.68 (1.08–2.62) 40/22/4 127/118/33 .122 .48 (.16–1.40)
rs11465955 C/T .432 .339 .029 1.48 (1.01-2.18) 23/29/14 122/117/34 .055 1.89 (.95–3.78)
rs1624395 G/A .529 .401 .004 1.68 (1.15–2.46) 18/27/22 98/137/43 .002 2.67 (1.46–4.89)
rs1370128 C/T .553 .412 .002 1.76 (1.21–2.58) 15/30/22 95/136/46 .003 2.45 (1.35–4.47)

a P value by Fisher exact test. Values in bold were still significant after Bonferroni correction (threshold .0083).
b The three values indicate the number of homozygotes for the major allele and the number of heterozygotes and homozygotes

for the minor allele in the control sample.
c OR for genotype 22 versus 12 and 11.

To see if any mutations in the IRAK-M coding sequence
were implicated in asthma in the Sardinian population,
we sequenced all the exons as well as the intron/exon
boundaries of the IRAK-M gene in 100 probands randomly
selected from all the families in this study. We identified
seven nucleotide-sequence variations present in 10 dif-
ferent families (table 5). Two interesting mutations were
detected in families A and B. In family A, a stop codon in
the conserved tryptophan within the DD (W76X) could
result in nonsense-mediated mRNA decay (NMD) or
could generate a protein lacking the N-terminal part, as a
consequence of translation initiation at an alternative
downstream ATG.29 In family B, a GrT substitution at
position �1 of the donor splice site of exon 3 is expected
to severely affect splicing of the IRAK-M gene and could
give rise to a truncated protein containing only the DD.
Both mutations were coinherited with the predisposing
risk haplotype (TAT) and were associated with early-onset
asthma. In addition, five nucleotide changes give rise to
amino acid substitutions in the IRAK-M protein sequence.
Among these, amino acid changes P22L in the DD and
L400V and R429Q in the kinase domain of the IRAK-M
protein are predicted to modify the domain structure, al-
though it remains unclear if they are functionally relevant.
As might be expected for a multifactorial disease, we did
not observe a correlation between the severity of the
asthma phenotype in patients and the presence of these
mutations in the IRAK-M gene. Dot-blot analysis with the
use of allele-specific probes in the entire sample of affected
families and in 200 healthy controls did not detect these
mutations.

Expression Studies

Previous studies have shown that the IRAK-M gene is
highly expressed in monocytic cells, compared with low-
level expression in other tissues.24 We extended these
studies to lung biopsies from healthy donors. Immuno-
histochemistry with an antibody directed against IRAK-M
showed that this molecule is expressed by macrophages
as well as by alveolar and bronchial epithelial cells in the
lung (fig. 3A). In particular, staining with an antibody di-

rected against TTF1, a marker of type II pneumocytes, re-
vealed that IRAK-M is expressed by that cell type (fig. 3B).
Staining of biopsies with an antibody against the NF-kB
component p65 revealed that type II epithelial cells also
express this molecule (not shown). Consistent with pre-
vious reports, we observed a high level of NF-kB activation
in airway epithelial cells in bronchi and alveoli (fig. 3C).30

The expression of IRAK-M in type II pneumocytes makes
it a candidate for more-extensive involvement in pul-
monary function.

Discussion

In searches for genes, age has rarely been used to discrim-
inate genetic subclasses of asthma. Yet, several studies in-
dicate the existence of relevant clinical peculiarities in
early- versus late-onset disease. Incidence of severe disease,
high IgE levels, and lung inflammation, for instance, are
more pronounced in children than in adults.31–33 Further-
more, asthmatic children may go into clinical remission
after puberty, along with the shift in steroid hormone lev-
els and developmental changes in lung structure. On the
basis of these observations, we selected a cutoff age of 13
years at asthma onset, to stratify the sample. At this age,
puberty is expected to have begun in all children. Using
this criterion, we detected significant linkage to a portion
of 12q13-24 and identified IRAK-M as the gene in the can-
didate region implicated in early-onset persistent asthma.

In particular, a predisposing three-SNP haplotype (TAT)
located within the IRAK-M gene accounted for practically
all the linkage in this region and was associated with early-
onset persistent asthma. Also, SNPs mapping within the
IRAK-M gene was associated with asthma in an indepen-
dent outbred population. In this population, we were able
to evaluate only cases with persistent asthma, since in-
formation about disease onset was not available. We be-
lieve that association of IRAK-M SNPs with asthma in this
sample may be due to the contribution of subjects with
early disease onset. Indeed, early onset is often associated
with persistency of asthma symptoms to adulthood and
is the most severe form of the disease. Finally, preliminary
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Table 5. Mutations in the Coding Region of the IRAK-M Gene in Sardinian Asthmatic Patients

Family and Sibling
Mutation

Type Exon
Amino Acid

Change
Nucleotide
Position

Mutation
Presence
in Sibsa

Predisposing
Haplotypeb

Age at Asthma
Onset
(years)

A: Nonsense 2 p.W76X c.227GrA
1 � �/� �13
2 � �/� �13

B: Splicing site IVS3 Aberrant splicing IVS3�1GrT
1 � �/� �13
2 � �/� �13
3 � �/� �13

C: Missense 1 p.P22L c.65CrT
1 � �/� �13
2 � �/� �13

D: Missense 1 p.P22L c.65CrT
1 � �/� 113
2 � �/� 113
3 � �/� 113

E: Missense 3 p.P111A c.331CrG
1 � �/� 113
2 � �/� 113
3 � �/� 113
4 � �/� 113

F: Missense 4 p.V134M c.400GrA
1 � �/� �13
2 � �/� �13

G: Missense 11 p.L400V c.1198CrG
1 � �/� �13
2 � �/� �13

H: Missense
1 11 p.L400V c.1198CrG � �/� 113

I: Missense 11 p.L400V c.1198CrG
1 � �/� �13
2 � �/� �13

L: Missense 11 p.R429Q c.1286GrA
1 � �/� 113
2 � �/� 113

a Plus sign (�) denotes presence and minus sign (�) denotes absence of mutation in siblings.
b �/� Denotes homozygous-predisposing haplotype (TAT); �/� denotes heterozygous-predisposing haplotype; �/� denotes absence of pre-

disposing haplotype.

work has detected rare nonsense, splicing, and missense
mutations within the IRAK-M gene in a subgroup of family
members with asthma but not in healthy controls, sug-
gesting that insufficiency of this protein may predispose
individuals to asthma. A more comprehensive sequence-
based study of the spectrum of rare variants at this locus
may reveal a clustering of such rare variants in subjects
with asthma.34 It is not surprising that the risk haplotype
and/or the mutations of the IRAK-M gene were not de-
tected in all subjects affected by early-onset asthma, be-
cause defective IRAK-M function presumably acts in con-
cert with other genes and environmental factors. Con-
sistent with complex causation, SNPs within the IRAK-M
gene were not found to be associated with asthma in an
urban Japanese cohort.35

How might IRAK-M variants be involved in the devel-
opment of atopic asthma? IRAK-M is induced upon TLR
stimulation and negatively regulates TLR signaling and
inflammation.24,25,36 The family of TLRs is crucial in the
activation of the adaptive immune response to patho-

gens and lung disease.23,27 TLR stimulation has been con-
sidered primarily linked to the activation of a Th1 re-
sponse, which could protect against asthma sensitization
and initiation but could also trigger asthma symptoms and
increase bronchial hyperreactivity once allergic disease is
present.37 Recent studies have suggested that TLR activa-
tion can also induce Th2 cytokines and the development
of experimental asthma.38,39 Also, the exposure to lipo-
polysaccharide doses similar to the levels in the environ-
ment of asthmatic children triggers a Th2 response.40 Sev-
eral studies have found positive associations of SNPs in
different TLRs with asthma and atopy.41

Malfunction of the TLR pathway in innate immunity is
likely to be involved in atopic disease as well as asthma
exacerbation, and our results suggest a critical role for
IRAK-M, a major regulator of this pathway. The patho-
genetic mechanism(s) remain unclear, but a first hint
comes from the observation that IRAK-M is expressed in
type II pneumocytes. These cells play key roles in lung
function and innate immune defense and may be in-
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Figure 3. A, B, and C, Immunohistochemical localization of IRAK-M in normal lung biopsy samples from healthy donors. Expression
of IRAK-M (A) was detected in the cytoplasm of alveolar macrophages (red arrowhead) and type II epithelial cells, particularly at the
level of bronchi (b) and alveoli (a [yellow arrowheads]). Nuclei of epithelial type II cells in bronchi and alveoli are stained by the anti-
TTF1 antibody (B) and by the anti-phospho-p65 antibody (C) that recognizes the activated form of the NF-kB subunit. Tissues were
counterstained with hematoxylin. Results are representative of at least six independent experiments. a p alveolus; b p bronchus.
Yellow arrowhead indicates alveolar type II pneumocytes. Scale bar p 50 mm. D, IRAK-M as a brake on inflammatory processes involved
in asthma. Recognition of different elicitors by TLRs on alveolar macrophages and lung epithelial cells triggers the formation of a
receptor/adaptor complex including IRAK-1, IRAK-4, and MyD88. Release of phosphorylated IRAK-1 from the signaling complex leads
to activation of MAPKs and NF-kB. This in turn results in the production of inflammatory cytokines that can influence T-cell activation
and differentiation of Th precursors into Th1 and Th2 subtypes. Once the immune response is mounted, IRAK-M inhibits TLR signaling
by interrupting IRAK-1 downstream signal transduction, thus restoring homeostasis. When IRAK-M function is hampered, excessive TLR
stimulation may lead to continuous activation of Th1 and Th2 cells in the lung and to the development of atopic asthma and/or asthma
exacerbation in response to infections/allergens.

volved in allergen-induced airway changes. Recent work
has suggested a specific role of IRAK-M in lung innate
immunity.42 In particular, it has been reported that lungs
from IRAK-M–deficient septic mice responded to bacterial
challenge by producing elevated levels of inflammatory
cytokines and chemokines, which cause the recruitment
of increased numbers of neutrophils in the airways. No-
tably, this cell type is involved in asthma exacerbation.
On the basis of our results and previous observations, we
propose the following etiological pathway toward asth-
ma (fig. 3D). IRAK-M intervenes critically to modulate
the activation of NF-kB and downstream inflammatory
responses. When its function is diminished or compro-
mised, continuous overproduction of inflammatory cyto-
kines in the lung in response to infection/allergens may
lead to a Th2-mediated allergic response and/or Th1-de-
pendent exacerbation of asthma symptoms. If so, mod-
ulating IRAK-M function may provide a way to moderate
the development of allergic asthma. Finally, our data may
provide an entry point to identifying other genetic fac-

tors that predispose individuals to early- and late-onset
asthma.
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Appendix A

Table A1. Microsatellite Markers Genotyped for Multipoint Linkage Analysis on Chromosome
12q13-24

Marker

Sex-Averaged
Map

(Kosambi cM) Fluorophore

Primer (3′–5′)

Forward Reverse

D12S297 .0 HEX GTTTGGTATTGGAGTTTTCAG AAATCATCAGTGGAGTTAGCA
D12S1724 2.4 TET CTCTGGAGGCTGAGGTGG ATCCGTGCTGGTTCTATCTGTGTA
D12S72 6.2 TET CATCATCCCATGGTCGAAG GAGAGTAGGTTCCTTATCCTGGG
D12S83 7.7 TET TTTTTGGAAGTCTATCAATTTGA TAGCAGAGAAAGCCAATTCA
D12S371 12.3 FAM AAACCACACAAAGCCTCCAG TGATGACAGGCTCAAGCG
D12S75 17.6 FAM GTGGCTCTAAAGCATGACCA ATTTCTTCCACCTGCATGAT
D12S335 22.2 NED TCATCCAGGCTTCACC GTTTCTTTGGCAAGGACAGACACA
IFNG 24.3 HEX GCTGTTATAATTATAGCTGTC GTTTCTTCTACTGTGCCTTCCTGTAG
D12S43 26.0 FAM AATGTCCTTGTACTTAGGAT CACTTAATATCTCAATGTATAC
D12S1040 28.4 TET TATGACAGGATGAACAAAAACG AAATTGAATTTGATTTCTTCATAGC
D12S1052 29.9 HEX ATAGACAGGCTGGATAGATAGACG AGTGTGATATGAATAATGAGCTGC
D12S326 32.3 HEX CCCAGCAGTGCTAGTGTTGA GTTTCTTGGGCTAGGGTGGAGAATCAA
D12S1064 39.6 TET ACTACTCCAAGGTTCCAGCC AATATTGACTTTCTCTTGCTACCC
D12S311 40.9 HEX CCAAACATTAACTGTTCCC GTTTCTTGTGCCCTGAGCAACTG
D12S1300 44.6 HEX CCTCACACAATGTTGTAAGGG TGTAACATCCGTGATTAAAATAGC
PAH 48.6 TET GCCAGAACAACTGCTGGTTC AATCATAAGTGTTCCCAGAC
D12S78 54.7 FAM CTTTGCAGCACCATGTATTT ACTGCTGGCTTTAACAGAAA

Table A2. Results of Association Analysis by TDT in Trios with
Early-Onset Persistent Asthma, with Use of 22 SNPs in the Genomic
Region Spanning IRAK-M

SNP or Haplotypea Frequencyb T:Uc Pd

Empirical P
(105 Permutations)

rs7970350 .398 30:42 .1572 .8416
rs949911 .142 25:27 .7815 1.0000
rs6581660 .273 48:34 .1220 .7359
rs11836463 .241 42:34 .3587 .9904
rs2870784 .171 30:24 .4142 .9984
rs10878378 .413 25:59 .0002 .0018
rs1177578 .413 27:66 .0000 .0003
rs1168754 .167 27:23 .5716 1.0000
rs2141709 .317 23:45 .0076 .0726
rs1168770 .414 27:62 .0002 .0017
rs2701652 .180 25:23 .7728 1.0000
rs1732886 .181 26:26 1.0000 1.0000
rs1882200 .396 60:30 .0007 .0094
rs11465955 .391 58:28 .0012 .0113
rs2293657 .392 58:27 .0007 .0063
rs1821777 .398 55:29 .0045 .0294
rs1624395 .451 47:29 .0389 .3453
rs1370128 .471 49:32 .0489 .4524
rs2118137 .324 46:50 .6830 1.0000
rs289068 .232 34:34 1.0000 1.0000
rs3741604 .338 38:46 .3827 .9945
rs1168314 .350 38:52 .1400 .7785
GGGTAT .385 61:28 .0005 .0011
GCACGC .277 23:46 .0057 .0282
TGGCGC .165 31:22 .2163 .8403
GCGCAT .057 7:16 .0587 .3274

a SNPs highlighted in bold italics are within the IRAK-M gene. Four haplotypes
identified by six tag SNPs (rs2870784, rs1177578, rs2141709, rs11465955,
rs1624395, and rs1370128) are shown at the bottom. Only haplotypes with fre-
quency 10.05 are shown.

b Frequency of minor alleles of SNPs and haplotypes.
c T:U denotes number of transmitted versus untransmitted minor alleles.
d P value in bold indicates .P ! .05
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Table A3. Characteristics of Sardinian and Mainland Italian
Subjects Used in Case-Control Studies

Characteristic

Sardinians Mainland Italians

Casesa Controls Cases Controls

No. of subjects 139 460 67 278
Age (years)b 22.37�8.61 30.12�10.09 38.32�9.69 39.01�6.32
Males (%) 55.40 41.30 46.96 48.56

a Sardinian cases are subjects with early-onset persistent asthma.
b Data are reported as means�SDs.

Table A4. Haplotypes Identified by the Six Tag SNPs Showing an Estimated
Frequency 15% in the Italian Case-Control Sample

Frequency rs2870784 rs1177578 rs2141709 rs11465955 rs1624395 rs1370128

.33950 G G G T A T

.28680 G C A C G C

.22996 T G G C G C

.05300 G C G C A T

Web Resources

Accession numbers and URLs for data presented herein are as
follows:

Center for Medical Genetics, Marshfield Medical Research Foun-
dation, http://research.marshfieldclinic.org/genetics/

dbSNP, http://www.ncbi.nlm.nih.gov/SNP/
Ensembl Genome Browser, http://www.ensembl.org/
The GDB Human Genome Database, http://gdbwww.gdb.org/
National Center for Biotechnology Information, http://www

.ncbi.nlm.nih.gov/
Online Mendelian Inheritance in Man (OMIM), http://www.ncbi

.nlm.nih.gov/Omim/ (for asthma and IRAK-M)
The SNP Consortium, http://snp.cshl.org/
UCSC Genome Browser, http://genome.cse.ucsc.edu/
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